Уран в моче как биоиндикатор для выявления накопления урана в организме человека
Ключевые слова:
уран, масс-спектрометрия, работники урановой промышленности, урановорудная провинция, эпидемиологические исследования, состояние здоровьяАннотация
В данном обзоре представлены данные о возможных радиотоксических последствиях воздействия урана организм человека и определения концентрации урана в моче в качестве биоиндикатора накопления урана в организме. В работе рассматривается потенциальное применение и методы определения урана в моче. В статье освещены данные эпидемиологических исследований, связанных с биомониторингом урана в моче у персонала, военнослужащих, контактирующих с обедненным ураном и у населения, проживающего на загрязненных территориях. В статье обсуждаются выявленные взаимосвязи между концентрацией урана в моче и состоянием здоровья, включая нефротоксичность. Кроме того, затрагиваются альтернативные биосубстраты, такие как волосы и ногти, как перспективные объекты для оценки хронического воздействия урана в условиях экологических исследований. В обзоре приведены и собственные исследования содержания урана в моче у персонала группы А радиационно-опасных предприятий, для которого биомониторинг является обязательной составляющей ежегодного медицинского осмотра, закрепленной на законодательном уровне. Было проанализировано более 2 тысяч образцов мочи методом масс-спектрометрии с индуктивно связанной плазмой. Средняя концентрация урана составила 0,90 мкг/л, при этом в отдельных случаях значения достигали 47,15 мкг/л. Наибольшие значения концентрации урана в моче были зафиксированы у работников, занятых в основных технологических процессах. Для оценки допустимого уровня урана в организме была рассчитана предельная концентрация в почках и сопоставлена с уровнями экскреции урана с мочой. Установлено, что концентрации свыше 15 мкг/л указывают на потенциальную нефротоксичность и необходимость коррекции условий труда персонала группы А. Полученные данные биомониторинга позволяют не только контролировать соблюдение допустимых дозовых нагрузок, но и обеспечивают необходимую информацию для оптимизации мер радиационной защиты и принятия решений о вмешательстве в случаях превышения уровней воздействия. Признание рисков, связанных с добычей и переработкой урана в Казахстане, должно способствовать изменению политики для защиты здоровья работников и населения в будущем.
Скачивания
Библиографические ссылки
Xin, J., Hong, C., Wei, J., Qie, J., Wang, H., Lei, B., Liu, Y. (2023). A comprehensive review of radioactive pollution treatment of uranium mill tailings. Environmental Science and Pollution Research, 30(46), 102104-102128. https://doi.org/10.1007/s11356-023-29401-z
Dawson, S. E., Madsen, G. E. (2011). Psychosocial and health impacts of uranium mining and milling on Navajo lands. Health physics, 101(5), 618-625. https://doi:10.1097/HP.0b013e3182243a7a
Vicente-Vicente, L., Quiros, Y., Pérez-Barriocanal, F., López-Novoa, J. M., López-Hernández, F. J., Morales, A. I. (2010). Nephrotoxicity of uranium: pathophysiological, diagnostic and therapeutic perspectives. Toxicological sciences, 118(2), 324-347. https://doi.org/10.1093/toxsci/kfq178
Zhang, X., Xue, X., Ding, D., Gu, Y., Sun, P. (2023). Feasibility of uranium tailings for cemented backfill and its environmental effects. Science of The Total Environment, 863, 160863. https://doi.org/10.1016/j.scitotenv.2022.160863
Mikhailovsky АА, M. E. (2019). Povysheniye effektivnosti uranodobyvayushchikh predpriyatiy v usloviyakh syr'yevogo defitsita [Improving the efficiency of uranium mining enterprises in conditions of raw materials shortage]. Mineral'nyye resursy Rossii. Ekonomika i upravleniye [Mineral resources of Russia. Economics and Management], (1), 164.
Boytsov, A. V. (2021, November). Development of the world uranium industry—challenges of the time. In Proceedings of the of The Fifth International Symposium Uranium: Geology, Resources, Production, Moscow, Russia (pp. 23-24).
Zhumadilov, K. S., Ivannikov, A., Kassymzhanov, M., Bagramova, A., Zhantore, I., Samal, S., Hoshi, M. Dosimetric Examination by the Tooth Enamel EPR Spectroscopy Method of the Population of Stepnogorsk City, a Region of Uranium Ore Mining and Processing in Kazakhstan. Available at SSRN 4928278. https://doi.org/10.1016/j.envc.2025.101098
Aumalikova M, Bakhtin M, Кazymbet P, Zhumadilov К, Altaeva N, Ibrayeva D, Shishkina E.Site-specific concentration of uranium in urine of workers of the hydrometallurgical plant of Stepnogorsk mining and chemical combine//Radiat Environ Biophys. 2020 Nov; 59(4):703-710. https://doi.org/10.1007/s00411-020-00874-7
Brugge, D., deLemos, J. L., Oldmixon, B. (2005). Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: a review. Reviews on environmental health, 20(3), 177-194. https://www.degruyterbrill.com/document/doi/10.1515/REVEH.2005.20.3.177/html
Bersimbaev, R. I., Bulgakova, O. (2015). The health effects of radon and uranium on the population of Kazakhstan. Genes and Environment, 37(1), 18. https://doi.org/10.1186/s41021-015-0019-3
Shin, W., Oh, J., Choung, S., Cho, B. W., Lee, K. S., Yun, U., Kim, H. K. (2016). Distribution and potential health risk of groundwater uranium in Korea. Chemosphere, 163, 108-115. https://doi.org/10.1016/j.chemosphere.2016.08.021
Dublineau, I., Souidi, M., Gueguen, Y., Lestaevel, P., Bertho, J. M., Manens, L., Aigueperse, J. (2014). Unexpected lack of deleterious effects of uranium on physiological systems following a chronic oral intake in adult rat. BioMed research international, 2014(1), 181989. https://doi.org/10.1155/2014/181989
Gudkov, S. V., Chernikov, A. V., Bruskov, V. I. (2016). Chemical and radiological toxicity of uranium compounds. Russian Journal of General Chemistry, 86(6), 1531-1538. https://doi.org/10.1134/S1070363216060517
Jin, F., Ma, T., Guan, H., Yang, Z. H., Liu, X. D., Wang, Y. Zhou, P. K. (2017). Inhibitory effect of uranyl nitrate on DNA double-strand break repair by depression of a set of proteins in the homologous recombination pathway. Toxicology Research, 6(5), 711-718. https://doi.org/10.1039/c7tx00125h
Taylor, D. M., Taylor, S. K. (1997). Environmental uranium and human health. Reviews on environmental health, 12(3), 147-158. https://www.degruyterbrill.com/document/doi/10.1515/REVEH.1997.12.3.147/html
Wyatt, S. A., Reitz, L. V., Croley, T. R., Hawkins, D., Barrett, E., Mckeown, A., ... & Royster, M. O. (2008). Biological monitoring of uranium exposure in south central Virginia. Journal of Exposure Science & Environmental Epidemiology, 18(1), 59-75. https://doi.org/10.1038/sj.jes.7500616
Kurttio, P., Auvinen, A., Salonen, L., Saha, H., Pekkanen, J., Mäkeläinen, I., Komulainen, H. (2002). Renal effects of uranium in drinking water. Environmental health perspectives, 110(4), 337-342. https://doi:10.1289/ehp.02110337
Keith, S., Faroon, O., Roney, N., Scinicariello, F., Wilbur, S., Ingerman, L., Diamond, G. (2013). Toxicological profile for uranium. https://europepmc.org/article/med/24049861
Standard, D. O. E. (2000). Guide of Good Practices for Occupational Radiological Protection in Uranium Facilities. US Department of Energy: DOE-STD-1136-2000, 2-16.
Keith, S., Faroon, O., Roney, N., Scinicariello, F., Wilbur, S., Ingerman, L., Diamond, G. (2013). Toxicological profile for uranium. https://europepmc.org/article/med/24049861
Roth, P., Höllriegl, V., Werner, E., Schramel, P. (2003). Assessment of exposure to depleted uranium. Radiation protection dosimetry, 105(1-4), 157-161. https://doi.org/10.1093/oxfordjournals.rpd.a006213
Gajek, R., Barley, F., She, J. (2013). Determination of essential and toxic metals in blood by ICP-MS with calibration in synthetic matrix. Analytical Methods, 5(9), 2193-2202. https://pubs.rsc.org/en/content/articlelanding/2013/ay/c3ay26036d/unauth
Cavey, T., Ropert, M., Loréal, O., Bendavid, C., Peoc’h, K. (2019, September). Metals: common clinical applications in inductively coupled plasma mass spectrometry. In Annales de Biologie Clinique (Vol. 77, No. 5, pp. 495-504). https://www.jle.com/10.1684/abc.2019.1480
Баталов, В. Р., Ишунина, М. В., Ефимов, А. В., Соколова, А. Б. (2025). Сравнительный анализ методов масс-спектрометрии с индуктивно связанной плазмой и альфа-спектрометрии для измерения активности плутония в биосубстратах. Радиационная гигиена, 17(4), 88-95. https://doi.org/10.21514/1998-426X-2024-17-4-88-95
Batalov, V. R., Ishunina, M. V., Efimov, A. V., Sokolova, A. B. (2025). Sravnitel`ny`j analiz metodov mass-spektrometrii s induktivno svyazannoj plazmoj i al`fa-spektrometrii dlya izmereniya aktivnosti plutoniya v biosubstratax (Comparative analysis of inductively coupled plasma mass spectrometry and alpha spectrometry methods for measuring plutonium activity in biosubstrates) [in Russian]. Radiacionnaya gigiena, 17(4), 88-95. https://doi.org/10.21514/1998-426X-2024-17-4-88-95
Rosenkranz, D., Kriegel, F. L., Mavrakis, E., Pergantis, S. A., Reichardt, P., Tentschert, J., Luch, A. (2020). Improved validation for single particle ICP-MS analysis using a pneumatic nebulizer/microdroplet generator sample introduction system for multi-mode nanoparticle determination. Analytica Chimica Acta, 1099, 16-25. https://doi.org/10.1016/j.aca.2019.11.043
Xiang, Z., Zheng, Y., Huang, Y., Shi, J., Zhang, Z. (2022). Focusing plasma desorption/ionization mass spectrometry. Analytical Chemistry, 94(49), 17090-17101. https://pubs.acs.org/doi/abs/10.1021/acs.analchem.2c03237
Wilschefski, S. C., Baxter, M. R. (2019). Inductively coupled plasma mass spectrometry: introduction to analytical aspects. The Clinical Biochemist Reviews, 40(3), 115 https://doi.org/10.33176/AACB-19-00024
Shi, Y., Dai, X., Collins, R., Kramer-Tremblay, S. (2011). Rapid determination of uranium isotopes in urine by inductively coupled plasma-mass spectrometry. Health Physics, 101(2), 148-153. https://doi.org/10.1097/HP.0b013e318213b9e6
Spencer, D., Bull, R. K., Cormack, L. (2007). Distribution of uranium in Dounreay workers due to uptake from the environment. Radiation protection dosimetry, 127(1-4), 415-417 https://doi.org/10.1093/rpd/ncm472
Shawky, S., Amer, H. A., Hussein, M. I., El-Mahdy, Z., Mustafa, M. (2002). Uranium bioassay and radioactive dust measurements at some uranium processing sites in Egypt—health effects. Journal of Environmental Monitoring, 4(4), 588-591. https://doi.org/10.1039/B202691K
Kotík, L., Bečková, V., Malátová, I., Tomasek, L. (2017). 238U content in urine of uranium miners and its modeled values. Radiation Protection Dosimetry, 177(4), 424-439 https://doi.org/10.1093/rpd/ncx061
Malátová, I., Bečková, V., Tomášek, L., Hůlka, J. (2011). Content of uranium in urine of uranium miners as a tool for estimation of intakes of long-lived alpha radionuclides. Radiation protection dosimetry, 147(4), 593-599. https://doi.org/10.1093/rpd/ncq542
Nicholas, T., Bingham, D. (2011). Assessment of uranium exposure from total activity and 234U: 238U activity ratios in urine. Radiation protection dosimetry, 144(1-4), 393-397. https://doi.org/10.1093/rpd/ncq321
Durante, M., Pugliese, M. (2002). Estimates of radiological risk from depleted uranium weapons in war scenarios. Health physics, 82(1), 14-20. https://journals.lww.com/health-physics/abstract/2002/01000/estimates_of_radiological_risk_from_depleted.4.aspx
Bešić, L., Muhović, I., Mrkulić, F., Spahić, L., Omanović, A., Kurtovic-Kozaric, A. (2018). Meta-analysis of depleted uranium levels in the Middle East region. Journal of environmental radioactivity, 192, 67-74. https://doi.org/10.1016/j.jenvrad.2018.06.004
Oliver, I. W., Graham, M. C., MacKenzie, A. B., Ellam, R. M., Farmer, J. G. (2007). Assessing depleted uranium (DU) contamination of soil, plants and earthworms at UK weapons testing sites. Journal of Environmental Monitoring, 9(7), 740-748. https://doi.org/10.1039/B700719A
Gwiazda, R. H., Squibb, K., McDiarmid, M., Smith, D. (2004). Detection of depleted uranium in urine of veterans from the 1991 Gulf War. Health physics, 86(1), 12-18. https://journals.lww.com/health-physics/abstract/2004/01000/detection_of_depleted_uranium_in_urine_of_veterans.4.aspx
Miller, B. G., Colvin, A. P., Hutchison, P. A., Tait, H., Dempsey, S., Lewis, D., Soutar, C. A. (2008). A normative study of levels of uranium in the urine of British Forces personnel. Occupational and environmental medicine, 65(6), 398-403. https://doi.org/10.1136/oem.2007.033381
Durakovic, A. (2005). The quantitative analysis of uranium isotopes in the urine of the civilian population of eastern Afghanistan after Operation Enduring Freedom. Military Medicine, 170(4), 277-284. https://doi.org/10.7205/MILMED.170.4.277
Venus, M., Puntarić, D., Gvozdić, V., Vidosavljević, D., Bijelić, L., Puntarić, A., Jasenka, Š. (2019). Determinations of uranium concentrations in soil, water, vegetables and biological samples from inhabitants of war affected areas in eastern Croatia (ICP-MS method). Journal of environmental radioactivity, 203, 147-153. https://doi.org/10.1016/j.jenvrad.2019.03.004
Wufuer, R., Song, W., Zhang, D., Pan, X., Gadd, G. M. (2018). A survey of uranium levels in urine and hair of people living in a coal mining area in Yili, Xinjiang, China. Journal of Environmental Radioactivity, 189, 168-174. https://doi.org/10.1016/j.jenvrad.2018.04.009
Malátová, I., Bečková, V., Kotík, L. (2016). Urinary excretion of uranium in adult inhabitants of the Czech Republic. Journal of Environmental Radioactivity, 152, 92-96. https://doi.org/10.1016/j.jenvrad.2015.11.011
Tolmachev, S., Kuwabara, J., Noguchi, H. (2006). Concentration and daily excretion of uranium in urine of Japanese. Health physics, 91(2), 144-153. https://doi.org/10.1097/01.HP.0000203311.85873.61
Karpas, Z., Paz-Tal, O., Lorber, A., Salonen, L., Komulainen, H., Auvinen, A., Kurttio, P. (2005). Urine, hair, and nails as indicators for ingestion of uranium in drinking water. Health physics, 88(3), 229-242. https://doi.org/10.1097/01.hp.0000149883.69107.ab
Jones, A. D., Miller, B. G., Walker, S., Anderson, J., Colvin, A. P., Hutchison, P. A., Soutar, C. A. (2007). A normative value pilot study: levels of uranium in urine samples from UK civilians. Environmental research, 104(2), 216-223. https://doi.org/10.1016/j.envres.2007.02.004
Al-Jundi, J., Werner, E., Roth, P., Höllriegl, V., Wendler, I., Schramel, P. (2004). Thorium and uranium contents in human urine: influence of age and residential area. Journal of environmental radioactivity, 71(1), 61-70. https://10.1016/S0265-931X(03)00141-3
Starościak, E., Rosiak, L. (2015). Determination of uranium reference levels in the urine of Warsaw residents (Poland). Journal of Radioanalytical and Nuclear Chemistry, 304(1), 75-79. https://doi.org/10.1007/s10967-014-3787-5
Wang, X., Xiao, P., Wang, R., Luo, C., Zhang, Z., Yu, S., Zhao, X. (2022). Relationships between urinary metals concentrations and cognitive performance among US older people in NHANES 2011–2014. Frontiers in public health, 10, 985127. https://doi.org/10.3389/fpubh.2022.985127
Okaneku, J., Vearrier, D., Mckeever, R., Lasala, G., Greenberg, M. I. (2015). Urine uranium concentrations and renal function in residents of the United States—2001 to 2010. Clinical Toxicology, 53(10), 931-934. https://doi.org/10.2337/db15-0316
Menke, A., Guallar, E., Cowie, C. C. (2016). Metals in urine and diabetes in US adults. Diabetes, 65(1), 164-171. https://doi.org/10.2337/db15-0316
Yang, J., Chan, K., Choi, C., Yang, A., & Lo, K. (2022). Identifying effects of urinary metals on type 2 diabetes in US adults: Cross-sectional analysis of National Health and Nutrition Examination Survey 2011–2016. Nutrients, 14(8), 1552. https://doi:10.3390/nu14081552
Dang, H. S., Pullat, V. R., Pillai, K. C. (1992). Determining the normal concentration of uranium in urine and application of the data to its biokinetics. Health physics, 62(6), 562-566. https://journals.lww.com/health-physics/abstract/1992/06000/Determining_the_Normal_Concentration_of_Uranium_in.10.aspx
Karpas, Z., Lorber, A., Elish, E., Marcus, P., Roiz, Y., Marko, R., Halicz, L. (1998). Uranium in urine-normalization to creatinine. Health physics, 74(1), 86-90. https://journals.lww.com/health-physics/abstract/1998/01000/Uranium_in_Urine_Normalization_to_Creatinine.10.aspx
Li, Y., Zou, X., Lv, J., Yang, L., Li, H., Wang, W. (2012). Trace elements in fingernails of healthy Chinese centenarians. Biological trace element research, 145(2), 158-165. https://doi.org/10.1007/s12011-011-9187-6
Dongarrà, G. A. E. T. A. N. O., Lombardo, M., Tamburo, E., Varrica, D., Cibella, F., Cuttitta, G. (2011). Concentration and reference interval of trace elements in human hair from students living in Palermo, Sicily (Italy). Environmental toxicology and pharmacology, 32(1), 27-34. https://doi.org/10.1016/j.etap.2011.03.003
Gault, A. G., Rowland, H. A., Charnock, J. M., Wogelius, R. A., Gomez-Morilla, I., Vong, S., Polya, D. A. (2008). Arsenic in hair and nails of individuals exposed to arsenic-rich groundwaters in Kandal province, Cambodia. Science of the Total Environment, 393(1), 168-176. https://doi.org/10.1016/j.scitotenv.2007.12.028
Qayyum, M. A., & Shah, M. H. (2014). Comparative assessment of selected metals in the scalp hair and nails of lung cancer patients and controls. Biological trace element research, 158(3), 305-322. https://doi.org/10.1007/s12011-014-9942-6
Imahori, A., Fukushima, I., Shiobara, S., Yanagida, Y., Tomura, K. (1979). Multielement neutron activation analysis of human scalp hair a local population survey in the Tokyo metropolitan area. Journal of Radioanalytical and Nuclear Chemistry, 52(1), 167-180. https://doi.org/10.1007/bf02517711
Sela, H., Karpas, Z., Zoriy, M., Pickhardt, C., Becker, J. S. (2007). Biomonitoring of hair samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). International Journal of Mass Spectrometry, 261(2-3), 199-207. https://doi.org/10.1016/j.ijms.2006.09.018
Rodushkin, I., Axelsson, M. D. (2000). Application of double focusing sector field ICP-MS for multielemental characterization of human hair and nails. Part II. A study of the inhabitants of northern Sweden. Science of the Total Environment, 262(1-2), 21-36. https://doi.org/10.1016/S0048-9697(00)00531-3
Samanta, G., Sharma, R., Roychowdhury, T., Chakraborti, D. (2004). Arsenic and other elements in hair, nails, and skin-scales of arsenic victims in West Bengal, India. Science of the Total Environment, 326(1-3), 33-47. https://doi.org/10.1016/j.scitotenv.2003.12.006
Aumalikova, M. N., Ibrayeva, D. S., Ilbekova, K., Kazymbet, P. K., Bakhtin, M. M., Janabaev, D. D., Altaeva, N. Z. (2020). Assessment of the dose burden and health status of the uranium processing workers of the Republic of Kazakhstan. Eurasian Journal of Physics and Functional Materials, 4(4), 336-343. https://elibrary.ru/item.asp?id=44791606
Ibrayeva, D., Bakhtin, M., Kashkinbayev, Y., Kazymbet, P., Zhumadilov, K., Altaeva, N., Shishkina, E. (2020). Radiation situation in the territories affected by mining activities in Stepnogorsk areas, Republic of Kazakhstan: pilot study. Radiation protection dosimetry, 189(4), 517-526. https://doi.org/10.1093/rpd/ncaa068
Janavayev, D. J., Kashkinbayev, Y. T., Ilbekova, K. B., Saifulina, Y. A., Bakhtin, M. M., Sharipov, M. K., Kazymbet, P. K. (2019). Health status of the population living in the zone of influence of radioactive waste repositories. Electronic Journal of General Medicine, 16(6), 176. https://pdfs.semanticscholar.org/ced5/60732dd75d3e6852ba5db71dc4395ce93eed.pdf
Ibrayeva, D. S., Aumalikova, M. N., Ilbekova, K. B., Bakhtin, M. M., Kazymbet, P. K., Ibrayeva, S. S., Zhumadilov, K. S. (2021). Assessment of radiation exposure in the settlements located in Stepnogorsk area. Eurasian Journal of Physics and Functional Materials, 5(1), 52-63. https://doi.org/10.32523/ejpfm.2021050107
Saifulina, E., Janabayev, D., Kashkinbayev, Y., Shokabaeva, A., Ibrayeva, D., Aumalikova, M., Bakhtin, M. (2023, March). Epidemiology of somatic diseases and risk factors in the population living in the zone of influence of uranium mining enterprises of Kazakhstan: a pilot study. In Healthcare (Vol. 11, No. 6, p. 804). MDPI. https://doi.org/10.3390/healthcare11060804
BAKHTIN, M. M., SAIFULINA, E. A., ILBEKOVA, K. B., KASHKINBAYEV, E. T., DZHANABAEV, D. D. (2020). Pharmacological Correction Of The Metabolic Status Of The Population Living In The Zone Of Influence Of Radioactive Waste Storage Facilities. International Journal of Pharmaceutical Research (09752366). https://doi.org/10.31838/ijpr/2020.SP1.302
Fitzgerald, J. (2022). Supplemental Review of M&C Work Group Issues. https://www.cdc.gov/niosh/ocas/pdfs/abrwh/scarpts/sca-metcontwgissues-508.pdf
Hartmann, H. M., Monette, F. A., Avci, H. I. (2000). Overview of toxicity data and risk assessment methods for evaluating the chemical effects of depleted uranium compounds. Human and Ecological Risk Assessment, 6(5), 851-874. https://doi.org/10.1080/10807030091124239
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, International Agency for Research on Cancer, World Health Organization. (2001). Ionizing radiation, part 2: some internally deposited radionuclides (Vol. 78). IARC.
Hodgson, A., Pellow, P. G. D., Stradling, G. N. (2007). Influence of nephrotoxicity on urinary excretion of uranium. St. Leonards, NSW, Australia: Health Protection Agency. https://assets.publishing.service.gov.uk/media/5a7eda9040f0b6230268bf44/HpaRpd025.pdf
Cousins, C., Miller, D. L., Bernardi, G., Rehani, M. M., Schofield, P., Vañó, E., Sim, K. H. (2011). International commission on radiological protection. ICRP publication, 120, 1-125. https://www.icrp.org/docs/P111(Special%20Free%20Release).pdf
Загрузки
Опубликован
Версии
- 2025-11-05 (3)
- 2025-11-03 (2)
- 2025-10-31 (1)






