Калиевые каналы семейства Кv7 – новая мишень лечения нейродегенеративных нарушений

Авторы

Ключевые слова:

эпилепсия, калиевые каналы, аксон, деполяризация, фосфатидилинозитол-4,5- бисфосфат, кальмодулин, синапс, ретигабин

Аннотация

Калиевые каналы принимают участие в формировании возбудимости нейрона при эпилепсии наравне
с другими каналами, но их роль была практически не исследованной. В нервной системе роль тормозных
калиевых каналов часто недооценивается, поскольку им трудно приписать какую-нибудь простую, интуитивно
понятную функцию, в отличие от, например, деполяризующих каналов, открытие которых приводит к
возникновению потенциалов действия и далее к передаче электрического сигнала на мышцу и ее сокращению.
Тем не менее уже сейчас ясно, что калиевые каналы незримо принимают участие практически в каждом
проявлении работы мозга, в каждом его нейроне, и их вклад становится особенно заметен при изучении таких
экстремальных состояний, как эпилепсия. Потенциал-чувствительные каналы Kv7.2/3 обеспечивают
неинактивируемый калиевый M-ток, который регулирует потенциал покоя нейрона в компартментспецифической манере. Это означает, что сами каналы Kv7.2/3 локализуются в аксоне нейрона и там
активируются.
Каналы Kv7 уникальны среди каналов K+
, поскольку четыре из пяти подтипов каналов играют хорошо
документированную роль в развитии заболеваний человека. Они выполняют различные физиологические
функции в сердце и нервной системе, что можно объяснить их свойствами управления потенциалом. Каналы
Kv7 также поддаются фармакологической модуляции, а синтетические открыватели и блокаторы каналов,
регулирующие нейронную возбудимость, существовали еще до того, как каналы Kv7 были идентифицированы
путем клонирования. В этом обзоре мы обсудим общую характеристику каналов Kv7 за последние годы,
историю открытия, структуру субъединиц Kv7, физиологию в нормальных и патологических условиях

Скачивания

Данные скачивания пока недоступны.

Биографии авторов

Тулеуханов С.Т., Казахский национальный университет имени аль-Фараби

Академик НАН РК, профессор кафедры биофизики, биомедицины и нейронауки

Зинченко В.П., Институт биофизики клетки Российской Академии Наук

Профессор, заведующий лабораторией внутриклеточной сигнализации

Тусупбекова Г.А., Казахский национальный университет имени аль-Фараби

Доцент кафедры биофизики, биомедицины и нейронауки

Қайрат Б.Қ., Казахский национальный университет имени аль-Фараби

Старший преподаватель кафедры биофизики, биомедицины и нейронауки

Малибаева А.Е., Казахский национальный университет имени аль-Фараби

Докторант

Оразова С.Б., Казахский национальный университет имени аль-Фараби

Старший преподаватель кафедры биотехнологии

Рахимжанова Ж.А., Mедицинский университет Астана

Профессор кафедры нормальной физиологии

Библиографические ссылки

Gaidin, S. G., Zinchenko, V. P., Teplov, I. Y., Tuleukhanov, S. T., & Kosenkov, A. M. (2019). Epileptiform activity promotes decreasing of Ca2+ conductivity of NMDARs, AMPARs, KARs, and voltage-gated calcium channels in Mg2+-free model. Epilepsy research, 158, 106224. https://doi.org/10.1016/j.eplepsyres.2019.106224

Dolgacheva, L. P., Tuleukhanov, S. T., & Zinchenko, V. P. (2020). Participation of Ca2+-permeable AMPA receptors in synaptic plasticity. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology, 14(3), 194-204. https://doi.org/10.1134/S1990747820030046

Maiorov, S. A., Kairat, B. K., Berezhnov, A. V., Zinchenko, V. P., Gaidin, S. G., & Kosenkov, A. M. (2024). Peculiarities of ion homeostasis in neurons containing calcium-permeable AMPA receptors. Archives of biochemistry and biophysics, 754, 109951. https://doi.org/10.1016/j.abb.2024.109951

Archer, C. R., Enslow, B. T., Taylor, A. B., De la Rosa, V., Bhattacharya, A., & Shapiro, M. S. (2019). A mutually induced conformational fit underlies Ca2+-directed interactions between calmodulin and the proximal C terminus of KCNQ4 K+ channels. Journal of Biological Chemistry, 294(15), 6094-6112. https://doi.org/10.1074/jbc.RA118.006857

Armand, V., Rundfeldt, C., & Heinemann, U. (1999). Effects of retigabine (D-23129) on different patterns of epileptiform activity induced by 4-aminopyridine in rat entorhinal cortex hippocampal slices. Naunyn-Schmiedeberg's archives of pharmacology, 359(1), 33-39. https://doi.org/10.1007/PL00005320

Barrese, V., Taglialatela, M., Greenwood, I. A., & Davidson, C. (2015). Protective role of Kv7 channels in oxygen and glucose deprivation-induced damage in rat caudate brain slices. Journal of Cerebral Blood Flow & Metabolism, 35(10), 1593-1600. https://doi.org/10.1038/jcbfm.2015.83

Beacher, N. G., Brodie, M. J., & Goodall, C. (2015). A case report: retigabine induced oral mucosal dyspigmentation of the hard palate. BMC Oral Health, 15(1), 122. https://doi.org/10.1186/s12903-015-0102-y

Beez, T., Steiger, H. J., & Etminan, N. (2017). Pharmacological targeting of secondary brain damage following ischemic or hemorrhagic stroke, traumatic brain injury, and bacterial meningitis-a systematic review and meta-analysis. BMC neurology, 17(1), 209. https://doi.org/10.1186/s12883-017-0994-z

Bierbower, S. M., Choveau, F. S., Lechleiter, J. D., & Shapiro, M. S. (2015). Augmentation of M-type (KCNQ) potassium channels as a novel strategy to reduce stroke-induced brain injury. Journal of Neuroscience, 35(5), 2101-2111. https://doi.org/10.1523/JNEUROSCI.3805-14.2015

Biervert, C., Schroeder, B. C., Kubisch, C., Berkovic, S. F., Propping, P., Jentsch, T. J., & Steinlein, O. K. (1998). A potassium channel mutation in neonatal human epilepsy. Science, 279(5349), 403-406. https://doi.org/10.1126/science.279.5349.403

Blackburn-Munro, G., & Jensen, B. S. (2003). The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic pain. European journal of pharmacology, 460(2-3), 109-116. https://doi.org/10.1016/S0014-2999(02)02924-2

Borsotto, M., Cavarec, L., Bouillot, M., Romey, G., Macciardi, F., Delaye, A., ... & Chumakov, I. (2007). PP2A-Bγ subunit and KCNQ2 K+ channels in bipolar disorder. The pharmacogenomics journal, 7(2), 123-132. https://doi.org/10.1038/sj.tpj.6500400

Boscia, F., Annunziato, L., & Taglialatela, M. (2006). Retigabine and flupirtine exert neuroprotective actions in organotypic hippocampal cultures. Neuropharmacology, 51(2), 283-294. https://doi.org/10.1016/j.neuropharm.2006.03.024

Brodie, M. J., Lerche, H., Gil-Nagel, A., Elger, C., Hall, S., Shin, P., ... & RESTORE 2 Study Group. (2010). Efficacy and safety of adjunctive ezogabine (retigabine) in refractory partial epilepsy. Neurology, 75(20), 1817-1824. https://doi.org/10.1212/WNL.0b013e3181fd6170

Brown, D. A., & Adams, P. R. (1980). Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature, 283(5748), 673-676. https://doi.org/10.1038/283673a0

Brown, D. A., Buckley, N. J., Caulfield, M. P., Duffy, S. M., Jones, S., Lamas, J. A., ... & Selyanko, A. A. (1995). Coupling of muscarinic acetylcholine receptors to neural ion channels: closure of K+ channels. Molecular mechanisms of muscarinic acetylcholine receptor function, 165-182.

Busserolles, J., Tsantoulas, C., Eschalier, A., & García, J. A. L. (2016). Potassium channels in neuropathic pain: advances, challenges, and emerging ideas. Pain, 157, S7-S14.

https://doi.org/10.1097/j.pain.0000000000000368

Carver, C. M., Hastings, S. D., Cook, M. E., & Shapiro, M. S. (2020). Functional responses of the hippocampus to hyperexcitability depend on directed, neuron‐specific KCNQ2 K+ channel plasticity. Hippocampus, 30(5), 435-455. https://doi.org/10.1002/hipo.23163

Chang, A., Abderemane-Ali, F., Hura, G. L., Rossen, N. D., Gate, R. E., & Minor, D. L. (2018). A calmodulin C-lobe Ca2+-dependent switch governs Kv7 channel function. Neuron, 97(4), 836-852. https://doi.org/10.1016/j.neuron.2018.01.035

Choveau, F. S., La Rosa, V. D., Bierbower, S. M., Hernandez, C. C., & Shapiro, M. S. (2018). Phosphatidylinositol 4, 5-bisphosphate (PIP2) regulates KCNQ3 K+ channels through multiple sites of action. bioRxiv, 380287. https://doi.org/10.1101/380287

Christensen, J., Pedersen, M. G., Pedersen, C. B., Sidenius, P., Olsen, J., & Vestergaard, M. (2009). Long-term risk of epilepsy after traumatic brain injury in children and young adults: a population-based cohort study. The Lancet, 373(9669), 1105-1110 https://doi.org/10.1016/S0140-6736(09)60214-2

Jentsch, T. J. (2000). Neuronal KCNQ potassium channels: physislogy and role in disease. Nature Reviews Neuroscience, 1(1), 21-30. https://doi.org/10.1038/35036198

Delmas, P., & Brown, D. A. (2005). Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nature Reviews Neuroscience, 6(11), 850-862. https://doi.org/10.1038/nrn1785

Miceli, F., Cilio, M. R., Taglialatela, M., Bezanilla, F. (2009). Gating currents from neuronal KV7. 4 channels: general features and correlation with the ionic conductance. Channels, 3(4), 277-286. https://doi.org/10.4161/chan.3.4.9477

Cooper, E. C., Aldape, K. D., Abosch, A., Barbaro, N. M., Berger, M. S., Peacock, W. S., Jan, L. Y. (2000). Colocalization and coassembly of two human brain M-type potassium channel subunits that are mutated in epilepsy. Proceedings of the National Academy of Sciences, 97(9), 4914-4919. https://doi.org/10.1073/pnas.090092797

Adams, P. R., Brown, D. A. (1980). Luteinizing hormone‐releasing factor and muscarinic agonists act on the same voltage‐sensitive K+‐current in bullfrog sympathetic neurones. British journal of pharmacology, 68(3), 353-355. https://doi.org/10.1111/j.1476-5381.1980.tb14547.x

Tatulian, L., Delmas, P., Abogadie, F. C., Brown, D. A. (2001). Activation of expressed KCNQ potassium currents and native neuronal M-type potassium currents by the anti-convulsant drug retigabine. Journal of Neuroscience, 21(15), 5535-5545. https://doi.org/10.1523/JNEUROSCI.21-15-05535.2001

Adelman, J. P., Maylie, J., & Sah, P. (2012). Small-conductance Ca2+-activated K+ channels: form and function. Annual review of physiology, 74(1), 245-269. https://doi.org/10.1146/annurev-physiol-020911-153336

Shapiro, M. S., Roche, J. P., Kaftan, E. J., Cruzblanca, H., Mackie, K., & Hille, B. (2000). Reconstitution of muscarinic modulation of the KCNQ2/KCNQ3 K+ channels that underlie the neuronal M current. Journal of Neuroscience, 20(5), 1710-1721. https://doi.org/10.1523/JNEUROSCI.20-05-01710.2000

Adams, P. R., Brown, D. A., & Constanti, A. (1982). Pharmacological inhibition of the M‐current. The Journal of Physiology, 332(1), 223-262. https://doi.org/10.1113/jphysiol.1982.sp014411

Cook, L., Nickolson, V. J., Steinfels, G. F., Rohrbach, K. W., Denoble, V. J. (1990). Cognition enhancement by the acetylcholine releaser DuP 996. Drug development research, 19(3), 301-314. https://doi.org/10.1002/ddr.430190308

Sanguinetti, M. C., Curran, M. E., Zou, A., Shen, J., Specter, P. S., Atkinson, D. L., Keating, M. T. (1996). Coassembly of KvLQT1 and minK (IsK) proteins to form cardiac I Ks potassium channel. Nature, 384(6604), 80-83. https://doi.org/10.1038/384080a0

Nakajo, K., Ulbrich, M. H., Kubo, Y., & Isacoff, E. Y. (2010). Stoichiometry of the KCNQ1-KCNE1 ion channel complex. Proceedings of the National Academy of Sciences, 107(44), 18862-18867. https://doi.org/10.1073/pnas.1010354107

Neyroud, N., Tesson, F., Denjoy, I., Leibovici, M., Donger, C., Barhanin, J., Guicheney, P. (1997). A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nature genetics, 15(2), 186-189. https://doi.org/10.1038/ng0297-186

Ng, F. L., Davis, A. J., Jepps, T. A., Harhun, M. I., Yeung, S. Y., Wan, A., ... & Greenwood, I. A. (2011). Expression and function of the K+ channel KCNQ genes in human arteries. British journal of pharmacology, 162(1), 42-53. https://doi.org/10.1111/j.1476-5381.2010.01027.x

Schroeder, B. C., Kubisch, C., Stein, V., Jentsch, T. J. (1998). Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature, 396(6712), 687-690. https://doi.org/10.1038/25367

Kole, M. H., Cooper, E. C. (2014). Axonal Kv7. 2/7.3 channels: caught in the act. Channels, 8(4), 288-289. https://doi.org/10.4161/chan.29965

Kharkovets, T., Hardelin, J. P., Safieddine, S., Schweizer, M., El-Amraoui, A., Petit, C., & Jentsch, T. J. (2000). KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proceedings of the National Academy of Sciences, 97(8), 4333-4338. https://doi.org/10.1073/pnas.97.8.4333

Brueggemann, L. I., Mackie, A. R., Cribbs, L. L., Freda, J., Tripathi, A., Majetschak, M., Byron, K. L. (2014). Differential protein kinase C-dependent modulation of Kv7. 4 and Kv7. 5 subunits of vascular Kv7 channels. Journal of Biological Chemistry, 289(4), 2099-2111. https://doi.org/10.1074/jbc.M113.527820

Ohya, S., Asakura, K., Muraki, K., Watanabe, M., Imaizumi, Y. (2002). Molecular and functional characterization of ERG, KCNQ, and KCNE subtypes in rat stomach smooth muscle. American Journal of Physiology-Gastrointestinal and Liver Physiology, 282(2), G277-G287. https://doi.org/10.1152/ajpgi.00200.2001

Greenwood, I. A., & Ohya, S. (2009). New tricks for old dogs: KCNQ expression and role in smooth muscle. British journal of pharmacology, 156(8), 1196-1203. doi: 10.1111/j.1476-5381.2009.00131.x

Suh, B. C., Inoue, T., Meyer, T., & Hille, B. (2006). Rapid chemically induced changes of PtdIns (4, 5) P2 gate KCNQ ion channels. Science, 314(5804), 1454-1457. https://doi.org/10.1126/science.1131163

Barhanin, J., Lesage, F., Guillemare, E., Fink, M., Lazdunski, M., Romey, G. (1996). KvLQT1 and IsK (minK) proteins associate to form the I Ks cardiac potassium current. Nature, 384(6604), 78-80. https://doi.org/10.1038/384078a0

Barrese, V., Stott, J. B., Greenwood, I. A. (2018). KCNQ-encoded potassium channels as therapeutic targets. Annual review of pharmacology and toxicology, 58, 625-648. https://doi.org/10.1146/annurev-pharmtox-010617-052912

Biervert, C., Schroeder, B. C., Kubisch, C., Berkovic, S. F., Propping, P., Jentsch, T. J., & Steinlein, O. K. (1998). A potassium channel mutation in neonatal human epilepsy. Science, 279(5349), 403-406. https://doi.org/10.1126/science.279.5349.403

Brown, D. A., Adams, P. R. (1980). Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature, 283(5748), 673-676. https://doi.org/10.1038/283673a0

Charlier, C., Singh, N. A., Ryan, S. G., Lewis, T. B., Reus, B. E., Leach, R. J., Leppert, M. (1998). A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nature genetics, 18(1), 53-55. https://doi.org/10.1038/ng0198-53

Delmas, P., Brown, D. A. (2005). Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nature Reviews Neuroscience, 6(11), 850-862. https://doi.org/10.1038/nrn1785

Ford, C. P., Stemkowski, P. L., Light, P. E., Smith, P. A. (2003). Experiments to test the role of phosphatidylinositol 4, 5-bisphosphate in neurotransmitter-induced M-channel closure in bullfrog sympathetic neurons. Journal of Neuroscience, 23(12), 4931-4941. https://doi.org/10.1523/JNEUROSCI.23-12-04931.2003

Zimmer, J., Takahashi, T., Hofmann, A. D., Puri, P. (2017). Downregulation of KCNQ5 expression in the rat pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia. Journal of Pediatric Surgery, 52(5), 702-705. https://doi.org/10.1016/j.jpedsurg.2017.01.016

Загрузки

Опубликован

2025-08-30

Выпуск

Раздел

Статьи